题目内容
(理科做) 用数学归纳法证明:
+
+…+
=
.
| 12 |
| 1•3 |
| 22 |
| 3•5 |
| n2 |
| (2n-1)(2n+1) |
| n(n+1) |
| 2(2n+1) |
分析:用数学归纳法进行证明,先证明当n=1时,等式成立.再假设当n=k时等式成立,进而证明当n=k+1时,等式也成立;
解答:证明:(1)当n=1时,左=
=右,等式成立.
(2)假设当n=k时等式成立,
即
+
+…+
=
,
当n=k+1时,左边=
+
+…+
+
=
+
=
.
∴当n=k+1时,等式也成立.
综合(1)(2),等式对所有正整数都成立.
| 1 |
| 3 |
(2)假设当n=k时等式成立,
即
| 12 |
| 1•3 |
| 22 |
| 3•5 |
| k2 |
| (2k-1)(2k+1) |
| k(k+1) |
| 2(2k+1) |
当n=k+1时,左边=
| 12 |
| 1•3 |
| 22 |
| 3•5 |
| k2 |
| (2k-1)(2k+1) |
| (k+1)2 |
| (2k+1)(2k+3) |
| k(k+1) |
| 2(2k+1) |
| (k+1)2 |
| (2k+1)(2k+3) |
| (k+1)(k+2) |
| 2(2k+3) |
∴当n=k+1时,等式也成立.
综合(1)(2),等式对所有正整数都成立.
点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.
练习册系列答案
相关题目