题目内容

在△ABC中,内角A,B,C的对边分别为a,b,c.已知
cosA-3cosC
cosB
=
3c-a
b

(Ⅰ)求
sinC
sinA
的值;
(Ⅱ)若B为钝角,b=10,求a的取值范围.
(本小题满分14分)
(I)由正弦定理,设
a
sinA
=
b
sinB
=
c
sinC
=k

3c-a
b
=
3ksinC-ksinA
ksinB
=
3sinC-sinA
sinB

所以
cosA-3cosC
cosB
=
3sinC-sinA
sinB
.…(4分)
即(cosA-3cosC)sinB=(3sinC-sinA)cosB,
化简可得sin(A+B)=3sin(B+C).…(6分)
又A+B+C=π,
所以sinC=3sinA
因此
sinC
sinA
=3
.…(8分)
(II)由
sinC
sinA
=3
得c=3a.…(9分)
由题意
a+c>b
a2+c2b2
,…(12分)
5
2
<a<
10
…(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网