题目内容
已知F1、F2是双曲线16x2-9y2=144的焦点,P为双曲线上一点,若|PF1||PF2|=32,则∠F1PF2=( )
分析:把双曲线化为标准方程,求出焦距,利用双曲线的定义和余弦定理能求出∠F1PF2.
解答:解:把双曲线16x2-9y2=144化为标准方程,得
-
=1,
∵a2=9,b2=16,∴c=5,
∴|F1F2|=2c=10,
设|PF1|>|PF2|,
则|PF1|-|PF2|=6,
∴|PF1|2+|PF2|2-2|PF1||PF2|=36,
∵|PF1||PF2|=32,
∴|PF1|2+|PF2|2=100,
∴cos∠F1PF2=
=
=0,
∴∠F1PF2=
.
故选C.
| x2 |
| 9 |
| y2 |
| 16 |
∵a2=9,b2=16,∴c=5,
∴|F1F2|=2c=10,
设|PF1|>|PF2|,
则|PF1|-|PF2|=6,
∴|PF1|2+|PF2|2-2|PF1||PF2|=36,
∵|PF1||PF2|=32,
∴|PF1|2+|PF2|2=100,
∴cos∠F1PF2=
| |PF1|2+|PF2|2-|F1F2|2 |
| 2|PF1||PF2| |
| 100-100 |
| 2×32 |
∴∠F1PF2=
| π |
| 2 |
故选C.
点评:本题考查角的大小的求法,解题时要熟练掌握双曲线的定义、性质,注意余弦定理的合理运用.
练习册系列答案
相关题目
已知F1,F2分别为双曲
-
=1(a>0,b>0)的左、右焦点,P为双曲线左支上任一点,若
的最小值为8a,则双曲线的离心率e的取值范围是( )
| x2 |
| a2 |
| y2 |
| b2 |
| |PF2|2 |
| |PF1| |
| A、(1,+∞) |
| B、(0,3] |
| C、(1,3] |
| D、(0,2] |