题目内容
已知数列{an}中,a1=1,an<an+1,设bn=
,Sn=b1+b2+…+bn,求证:
(Ⅰ)bn<2(
-
);
(Ⅱ)若数列{an}是公比为q且q≥3的等比数列,则Sn<1.
| an+1-an | ||
an+1•
|
(Ⅰ)bn<2(
| 1 | ||
|
| 1 | ||
|
(Ⅱ)若数列{an}是公比为q且q≥3的等比数列,则Sn<1.
分析:(Ⅰ)利用作差法证明该不等式,作差后,把bn=
代入,通分后进行因式分解,然后根据an<an+1判断差式的符号;
(Ⅱ)写出等比数列{an}的通项公式,代入bn=
后整理得到bn=q-
(1-q-1),利用等比数列求和得到Sn=(
+
)(1-
).由q≥3利用放缩法可证得Sn<1.
| an+1-an | ||
an+1•
|
(Ⅱ)写出等比数列{an}的通项公式,代入bn=
| an+1-an | ||
an+1•
|
| n |
| 2 |
| 1 | ||
|
| 1 |
| q |
| 1 | ||
|
解答:证明:(Ⅰ)由题意可知an>0
∵bn-2(
-
)
=
-2(
-
)
=
-2
=
.
又an<an+1,∴
-
>0,
•
<an+1,
•
+an-2an+1<0,
则
<0.
∴bn<2(
-
);
(Ⅱ)数列{an}是首项a1=1,公比为q且q≥3的等比数列,
∴an=a1qn-1=qn-1.
∴bn=
=
=q-
(1-q-1).
Sn=b1+b2+…+bn
=(1-q-1)(q-
+q-
+q-
+…+q-
)
=(1-q-1)•
=(
+
)(1-
).
∵q≥3,∴0<
+
≤
+
=
<1.
0<1-
<1.
∴Sn=(
+
)(1-
)<1.
∵bn-2(
| 1 | ||
|
| 1 | ||
|
=
| an+1-an | ||
an+1•
|
| 1 | ||
|
| 1 | ||
|
=
| an+1-an | ||
an+1
|
| ||||
|
=
(
| ||||||||
an+1•
|
又an<an+1,∴
| an+1 |
| an |
| an+1 |
| an |
| an+1 |
| an |
则
(
| ||||||||
an+1•
|
∴bn<2(
| 1 | ||
|
| 1 | ||
|
(Ⅱ)数列{an}是首项a1=1,公比为q且q≥3的等比数列,
∴an=a1qn-1=qn-1.
∴bn=
| an+1-an | ||
an+1•
|
| qn-qn-1 | ||
q
|
| n |
| 2 |
Sn=b1+b2+…+bn
=(1-q-1)(q-
| 1 |
| 2 |
| 2 |
| 2 |
| 3 |
| 2 |
| n |
| 2 |
=(1-q-1)•
q-
| ||||
1-q-
|
=(
| 1 | ||
|
| 1 |
| q |
| 1 | ||
|
∵q≥3,∴0<
| 1 | ||
|
| 1 |
| q |
| 1 | ||
|
| 1 |
| 3 |
| ||
| 3 |
0<1-
| 1 | ||
|
∴Sn=(
| 1 | ||
|
| 1 |
| q |
| 1 | ||
|
点评:本题是数列和不等式的综合题,训练了作差法证明不等式,考查了数列的递推式及等比数列的前n项和公式,考查了不等式的基本性质,是中档题.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|