题目内容
对于已知的x,y,记f(x,y)=min{27-x,27x-y,27y-1},当x∈(0,1),y∈(0,1)时,f(x,y)的最大值为
.
| 1 |
| 3 |
| 1 |
| 3 |
分析:花括号内给出的三个数的底数相同,以指数为突破口,先由-x小于等于x-y,且-x小于等于y-1求出x的范围,并求出最小值27-x的最大值,然后讨论当0<x<
时,不论另外两个数哪一个最小,其最大值不会超过
.
| 1 |
| 3 |
| 1 |
| 3 |
解答:解:若
,由①得y≤2x,由②得y≥1-x,此时1-x≤2x,所以x≥
.
此时f(x,y)=min{27-x,27x-y,27y-1}=27-x≤27-
=
,
当0<x<
时,若y-1<x-y,则y<
,y-1<
-
<
-
=-
,此时27y-1<27-
=
,
若x-y<y-1,则y>
+
,x-y<-
+
<-
+
=-
,此时27x-y<27-
=
.
综上,f(x,y)的最大值为
.
故答案为
.
|
| 1 |
| 3 |
此时f(x,y)=min{27-x,27x-y,27y-1}=27-x≤27-
| 1 |
| 3 |
| 1 |
| 3 |
当0<x<
| 1 |
| 3 |
| 1+x |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
若x-y<y-1,则y>
| 1 |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
综上,f(x,y)的最大值为
| 1 |
| 3 |
故答案为
| 1 |
| 3 |
点评:本题综合考查了运用函数思想解决问题的能力,考查了函数的值域,该题运用抽象思维能力较强,属中高档题.
练习册系列答案
相关题目