题目内容
已知A,B,C是△ABC的三个内角,且向量a=cos
i+
sin
j的长度为|a|=
,其中i,j分别是x轴,y轴上的单位向量.
(1)求证:tanA•tanB是定值;
(2)求tan(A+B)的最小值.
| A-B |
| 2 |
| ||
| 2 |
| A+B |
| 2 |
3
| ||
| 4 |
(1)求证:tanA•tanB是定值;
(2)求tan(A+B)的最小值.
(1)由题意i2=1,j2=1,i•j=0,
则|a|2=i2cos2
+
j2sin2
+
i•jcos
sin
=cos2
+
sin2
=
+
•
而|a|=
,则
+
•
=
即4cos(A-B)=5cos(A+B),
4cosAcosB+4sinAsinB=5cosAcosB-5sinAsinB,cosAcosB=9sinAsinB,
=
,即tanAtanB=
.
(2)由tanAtanB=
>0,且A,B,C是△ABC的三个内角,
知tanA>0,tanB>0,
则tan(A+B)=
=
=
(tanA+tanB)≥
×2
=
×2×
=
,
当且仅当tanA=tanB=
时,tan(A+B)的最小值为
.
则|a|2=i2cos2
| A-B |
| 2 |
| 5 |
| 4 |
| A+B |
| 2 |
| 2 |
| A-B |
| 2 |
| A+B |
| 2 |
=cos2
| A-B |
| 2 |
| 5 |
| 4 |
| A+B |
| 2 |
=
| 1+cos(A-B) |
| 2 |
| 5 |
| 4 |
| 1-cos(A+B) |
| 2 |
而|a|=
3
| ||
| 4 |
| 1+cos(A-B) |
| 2 |
| 5 |
| 4 |
| 1-cos(A+B) |
| 2 |
| 9 |
| 8 |
即4cos(A-B)=5cos(A+B),
4cosAcosB+4sinAsinB=5cosAcosB-5sinAsinB,cosAcosB=9sinAsinB,
| sinAsinB |
| cosAcosB |
| 1 |
| 9 |
| 1 |
| 9 |
(2)由tanAtanB=
| 1 |
| 9 |
知tanA>0,tanB>0,
则tan(A+B)=
| tanA+tanB |
| 1-tanAtanB |
| tanA+tanB | ||
1-
|
=
| 9 |
| 8 |
| 9 |
| 8 |
| tanAtanB |
| 9 |
| 8 |
|
| 3 |
| 4 |
当且仅当tanA=tanB=
| 1 |
| 3 |
| 3 |
| 4 |
练习册系列答案
相关题目