题目内容
如果直线y=kx+1与圆x2+y2+kx+my-4=0相交于M、N两点,且点M、N关于直线x+y=0对称,则不等式组
所表示的平面区域的面积为________.
分析:由M与N关于x+y=0对称得到直线y=kx+1与x+y=0垂直,利用两直线垂直时斜率的乘积为-1,得到k的值;设出M与N的坐标,然后联立y=x+1与圆的方程,消去y得到关于x的一元二次方程,根据韦达定理得到两横坐标之和的关于m的关系式,再根据MN的中点在x+y=0上得到两横坐标之和等于-1,列出关于m的方程,求出方程的解得到m的值,把k的值和m的值代入不等式组,在数轴上画出相应的平面区域,求出面积即可.
解答:
∴k=1,又圆心
∴
∴m=-1
∴原不等式组变为
△AOB为不等式所表示的平面区域,联立
所以S△AOB=
故答案为:
点评:此题考查学生掌握直线与圆的位置关系、二元一次不等式(组)与平面区域等基本知识,考查学生灵活运用中点坐标公式化简求值,会进行简单的线性规划,是一道中档题.
练习册系列答案
相关题目