ÌâÄ¿ÄÚÈÝ
| x | 3 |
|
4 |
| ||||||
| y | -
|
|
-2 |
|
£¨2£©Èçͼ£¬¹ýµãM£¨2£¬0£©µÄÖ±ÏßlÓëC2ÏཻÓÚA£¬BÁ½µã£¬AÔÚxÖáÏ·½£¬BÔÚxÖáÉÏ·½£¬ÇÒ
| AM |
| 1 |
| 2 |
| MB |
£¨3£©Ó루2£©ÖÐÖ±ÏßlƽÐеÄÖ±Ïßl1ÓëÍÖÔ²½»ÓÚC£¬DÁ½µã£¬ÒÔCDΪµ×±ß×÷µÈÑü¡÷PCD£¬ÒÑÖªPµã×ø±êΪ£¨-3£¬2£©£¬Çó¡÷PCDµÄÃæ»ý£®
·ÖÎö£º£¨1£©ÉèÅ×ÎïÏß·½³ÌΪy2=mx£¬·Ö±ð½«Ëĸöµã´úÈëµÃµ½ÏàͬµÄmÖµÁ½¸öµã¼´¿É£¬½ø¶ø½«ÁíÍâÁ½¸öµãµÄ×ø±ê´úÈëÍÖÔ²·½³Ì¼´¿ÉµÃ³ö£»
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=my+2£¬ÓëÅ×ÎïÏß·½³ÌÁªÁ¢ÏûÈ¥xµÃ£ºy2-my-2=0£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼°ÏòÁ¿ÏàµÈ
=
£¬¼´¿ÉµÃµ½mµÄÖµ£®£®
£¨3£©ÉèÖ±Ïßl1µÄ·½³ÌΪ£ºy=x+t£¬ÓëÍÖÔ²½»ÓÚC£¨x3£¬y3£©¡¢D£¨x4£¬y4£©Á½µã£¬ÖеãΪQ£¨x0£¬y0£©£¬ÔòPQΪl1µÄ´¹Ö±Æ½·ÖÏߣ¬ÀûÓá°µã²î·¨¡±¼´¿ÉµÃ£ºx0=-3y0£¬ÓÖy0=-x0-1£¬ÁªÁ¢½âµÃ£ºx0£¬y0£¬´úÈël1µÄ·½³Ì¿ÉµÃt£®¿ÉµÃl1µÄ·½³Ì£¬ÀûÓõãбʽ¼´¿ÉµÃ³öPQµÄ·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢¼´¿ÉµÃµ½C¡¢D×ø±ê£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¼´¿É|CD|=3
£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃ£ºµãPµ½Ö±ÏßCD£¨l1£©µÄ¾àÀëh£¬ÀûÓÃS¡÷PCD=
|CD| ¡Áh¼´¿É£®
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=my+2£¬ÓëÅ×ÎïÏß·½³ÌÁªÁ¢ÏûÈ¥xµÃ£ºy2-my-2=0£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼°ÏòÁ¿ÏàµÈ
| AM |
| 1 |
| 2 |
| MB |
£¨3£©ÉèÖ±Ïßl1µÄ·½³ÌΪ£ºy=x+t£¬ÓëÍÖÔ²½»ÓÚC£¨x3£¬y3£©¡¢D£¨x4£¬y4£©Á½µã£¬ÖеãΪQ£¨x0£¬y0£©£¬ÔòPQΪl1µÄ´¹Ö±Æ½·ÖÏߣ¬ÀûÓá°µã²î·¨¡±¼´¿ÉµÃ£ºx0=-3y0£¬ÓÖy0=-x0-1£¬ÁªÁ¢½âµÃ£ºx0£¬y0£¬´úÈël1µÄ·½³Ì¿ÉµÃt£®¿ÉµÃl1µÄ·½³Ì£¬ÀûÓõãбʽ¼´¿ÉµÃ³öPQµÄ·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢¼´¿ÉµÃµ½C¡¢D×ø±ê£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¼´¿É|CD|=3
| 2 |
| 1 |
| 2 |
½â´ð£º½â£º£¨1£©ÉèÅ×ÎïÏß·½³ÌΪy2=mx£¬·Ö±ð½«Ëĸöµã´úÈë½âµÃm=1£¬m=-
£¬m=1£¬m=
£¬
¹ÊÅ×ÎïÏß·½³ÌΪy2=x£»
Òò´Ë(
£¬
)(
£¬-
)Á½¸öµãΪÍÖÔ²C1ÉÏÁ½µã£¬
ÉèÍÖÔ²·½³ÌΪ£º
+
=1£¬½«ÉÏÊöÁ½¸öµã×ø±ê´úÈë½âµÃ£ºa2=12£¬b2=4£¬
¹ÊÍÖÔ²·½³ÌΪ
+
=1£®
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=my+2£¬ÓëÅ×ÎïÏß·½³ÌÁªÁ¢£º
ÏûÈ¥xµÃ£ºy2-my-2=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò
£¬
ÓÖ
=
£¬
¡à-y1=
y2£¬ÏûÈ¥y1£¬y2£¬
½âµÃ£ºm=1£¬
ËùÒÔÖ±ÏßlµÄ·½³ÌΪ£ºx=y+2£¬¼´x-y-2=0£®
£¨3£©ÉèÖ±Ïßl1µÄ·½³ÌΪ£ºy=x+t£¬ÓëÍÖÔ²½»ÓÚC£¨x3£¬y3£©¡¢D£¨x4£¬y4£©Á½µã£¬ÖеãΪQ£¨x0£¬y0£©£¬
ÔòPQΪl1µÄ´¹Ö±Æ½·ÖÏߣ¬
C¡¢DÔÚÍÖÔ²ÉϿɵãº
»¯Îª£¨x3+x4£©£¨x3-x4£©+3£¨y3+y4£©£¨y3-y4£©=0£¬
°Ñx0=
£¬y0=
£¬1=
£®´úÈë¿ÉµÃ£ºx0=-3y0£¬ÓÖy0=-x0-1£¬
ÁªÁ¢½âµÃ£ºx0=-
£¬y0=
£¬´úÈël1µÄ·½³Ì£¬t=2£®
¡àl1µÄ·½³ÌΪ£ºy=x+2£¬
¡àPQµÄ·½³ÌΪy-
=-(x+
)£¬»¯Îªy=-x-1£®
ÁªÁ¢
£¬½âµÃ
£¬
£¬C¡¢D×ø±ê£¬
¡à|CD|=
=3
£¬µãPµ½Ö±ÏßCD£¨l1£©µÄ¾àÀëh=
£®
¡àS¡÷PCD=
|CD| ¡Áh=
¡Á3
¡Á
=
£®
| 3 |
| ||
| 3 |
¹ÊÅ×ÎïÏß·½³ÌΪy2=x£»
Òò´Ë(
| 3 |
| 3 |
| 6 |
| 2 |
ÉèÍÖÔ²·½³ÌΪ£º
| x2 |
| a2 |
| y2 |
| b2 |
¹ÊÍÖÔ²·½³ÌΪ
| x2 |
| 12 |
| y2 |
| 4 |
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=my+2£¬ÓëÅ×ÎïÏß·½³ÌÁªÁ¢£º
|
ÏûÈ¥xµÃ£ºy2-my-2=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò
|
ÓÖ
| AM |
| 1 |
| 2 |
| MB |
¡à-y1=
| 1 |
| 2 |
½âµÃ£ºm=1£¬
ËùÒÔÖ±ÏßlµÄ·½³ÌΪ£ºx=y+2£¬¼´x-y-2=0£®
£¨3£©ÉèÖ±Ïßl1µÄ·½³ÌΪ£ºy=x+t£¬ÓëÍÖÔ²½»ÓÚC£¨x3£¬y3£©¡¢D£¨x4£¬y4£©Á½µã£¬ÖеãΪQ£¨x0£¬y0£©£¬
ÔòPQΪl1µÄ´¹Ö±Æ½·ÖÏߣ¬
C¡¢DÔÚÍÖÔ²ÉϿɵãº
|
°Ñx0=
| x3+x4 |
| 2 |
| y3+y4 |
| 2 |
| y3-y4 |
| x3-x4 |
ÁªÁ¢½âµÃ£ºx0=-
| 3 |
| 2 |
| 1 |
| 2 |
¡àl1µÄ·½³ÌΪ£ºy=x+2£¬
¡àPQµÄ·½³ÌΪy-
| 1 |
| 2 |
| 3 |
| 2 |
ÁªÁ¢
|
|
|
¡à|CD|=
| (-3-0)2+(-1-2)2 |
| 2 |
| 3 | ||
|
¡àS¡÷PCD=
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 | ||
|
| 9 |
| 2 |
µãÆÀ£ºÊìÁ·ÕÆÎÕÍÖÔ²ÓëÅ×ÎïÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÔ²×¶ÇúÏßµÄÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢µÃµ½¸ùÓëϵÊýµÄ¹ØÏµ¡¢¡°µã²î·¨¡±¡¢Öеã×ø±ê¹«Ê½¡¢Ð±ÂʼÆË㹫ʽ¡¢Á½µã¼äµÄ¾àÀ빫ʽ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½ÇÐεÄÃæ»ý¹«Ê½µÈÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿