题目内容
对任意两个非零的平面向量
和
,定义
?
=
.若两个非零的平面向量
,
满足
与
的夹角θ∈(
,
),且
?
和
?
都在集合{
|n∈Z}中,则
?
=______.
| α |
| β |
| α |
| β |
| ||||
|
| a |
| b |
| a |
| b |
| π |
| 4 |
| π |
| 2 |
| a |
| b |
| b |
| a |
| n |
| 2 |
| a |
| b |
由新定义可得:
?
=
=
=
cosθ,
?
=
=
=
cosθ,
又因为
?
和
?
都在集合{
|n∈Z}中,
设
?
=
,
?
=
,(n1,n2∈Z),
可得(
?
)•(
?
)=cos2θ=
,
又θ∈(
,
),所以0<n1n2<2
所以n1,n2的值均为1,故
?
=
=
故答案为:
| a |
| b |
| ||||
|
|
| ||||
|
|
|
| ||
|
|
| b |
| a |
| ||||
|
|
| ||||
|
|
|
| ||
|
|
又因为
| a |
| b |
| b |
| a |
| n |
| 2 |
设
| a |
| b |
| n1 |
| 2 |
| b |
| a |
| n2 |
| 2 |
可得(
| a |
| b |
| b |
| a |
| n1n2 |
| 4 |
又θ∈(
| π |
| 4 |
| π |
| 2 |
所以n1,n2的值均为1,故
| a |
| b |
| n1 |
| 2 |
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
练习册系列答案
相关题目