题目内容

1.已知△ABC的内角A,B,C的对边分别为a,b,c,2acosC=bcosC+ccosB.
(1)求角C的大小;
(2)若c=$\sqrt{7}$,a2+b2=10,求△ABC的面积.

分析 (1)由正弦定理得2sinAcosC=sinBcosC+sinCcosB,由A+B+C=π,求出cosC=$\frac{1}{2}$,由此能求出∠C.
(2)由余弦定理得7=10-ab,从而ab=3,由此能求出△ABC的面积.

解答 解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c,2acosC=bcosC+ccosB,
∴2sinAcosC=sinBcosC+sinCcosB,
∵A+B+C=π,
∴2sinAcosC=sin(B+C)=sinA,
∴cosC=$\frac{1}{2}$,
∵0<C<π,∴∠C=$\frac{π}{3}$.
(2)∵c=$\sqrt{7}$,a2+b2=10,$∠C=\frac{π}{3}$,
∴由余弦定理得:c2=a2+b2-2abcosC,
即7=10-ab,解得ab=3,
∴△ABC的面积S=$\frac{1}{2}absinC$=$\frac{1}{2}×3×sin\frac{π}{3}$=$\frac{3\sqrt{3}}{4}$.

点评 本题考查三角形角的大小的求法,考查三角形面积的求法,考查正弦定理、余弦定理、正弦函数加法定理、三角形面积公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网