题目内容

已知E,F分别是矩形ABCD的边AD,BC上的点,AB=2,AD=5.AE=1,BF=3现将四边形AEFB沿EF折成四边形A′EFB′,使DF⊥B′F
(I)求证:A′EFB′⊥平面CDEF
(II)求二面角B′-FC-E的大小.

【答案】分析:(I)根据折叠前线段的长度,判定EF与DF的垂直关系,再利用线线垂直⇒线面垂直,然后由线面垂直⇒面面垂直.
(II)根据面面垂直的性质作线面垂直,再根据三垂线定理作二面角的平面角,然后在三角形中求解即可.
解答:解:(I)证明:∵DF=EF=2,ED=4,
∴EF⊥DF,又∵DF⊥BF,EF∩BF=F,
∴DF⊥平面AEFB,又DF?平面CDEF,
∴平面AEFB⊥平面CDEF
(II)过B作BH⊥EF于H,
由(I)知平面AEFB⊥平面CDEF,
∴BH⊥平面CDEF,
过H作HK⊥CF,交CF延长线于K,连结BK,
由三垂线定理得,BK⊥CF,
∴∠BKH为二面角B-FC-E的平面角,
∵BF=3,∠BFE=45°,∠BHF=90°,
∴BH=HF=,HK=
∴tan∠BKH==
即二面角B-FC-E的正切值为
点评:本题考查面面垂直的判定及二面角的求法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网