题目内容
设A(x1,y1),B(x2,y2)是函数f(x)=
+log2
的图象上任意两点,且
=
(
+
),已知M的横坐标为
.
(1)求证:M点的纵坐标为定值;
(2)若Sn=
f(
),其中n∈N*,且n≥2,求Sn;
(3)已知an=
,其中n∈N*,Tn为数列{an}的前n项和,Tn<λ(Sn+1+1),对一切n∈N*都成立,试求λ的取值范围.
| 1 |
| 2 |
| x |
| 1-x |
| OM |
| 1 |
| 2 |
| OA |
| OB |
| 1 |
| 2 |
(1)求证:M点的纵坐标为定值;
(2)若Sn=
| n-1 |
| i=1 |
| i |
| n |
(3)已知an=
|
(1)∵
=
(
+
)
∴M是AB的中点,设M点的坐标为M(x,y),
由
(x1+x2)=x=
,得x1+x2=1,则x2=1-x1
而y=
=
[(
+log2
)+(
+log2
)]
=
[(
+log2
)+(
+log2
)]=
∴M点的纵坐标为定值
(2)由(1)知若x1+x2=1则f(x1)+f(x2)=y1+y2=1,Sn=
f(
)=f(
)+f(
)++f(
)
即Sn=f(
)+f(
)++f(
)
以上两式相加得:2Sn=[f(
)+f(
)]+[f(
)+f(
)]+[f(
)+f(
)]═
=n-1
∴Sn=
(3)当n≥2时,an=
=
=4(
-
)
∴Tn=a1+a2+…+an=
+4[(
-
)+(
-
)++(
-
)]=
+4(
-
)=
由Tn<λ(Sn+1+1)得
<λ•
∴λ>
=
=
∵n+
≥4,当且仅当n=2时“=”成立
∴
≤
=
.
因此λ>
,即λ的取值范围为(
,+∞)
| OM |
| 1 |
| 2 |
| OA |
| OB |
∴M是AB的中点,设M点的坐标为M(x,y),
由
| 1 |
| 2 |
| 1 |
| 2 |
而y=
| y1+y2 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| x1 |
| 1-x1 |
| 1 |
| 2 |
| x2 |
| 1-x2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| x1 |
| 1-x1 |
| 1 |
| 2 |
| 1-x1 |
| x1 |
| 1 |
| 2 |
∴M点的纵坐标为定值
| 1 |
| 2 |
(2)由(1)知若x1+x2=1则f(x1)+f(x2)=y1+y2=1,Sn=
| n-1 |
| i=1 |
| i |
| n |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
即Sn=f(
| n-1 |
| n |
| n-2 |
| n |
| 1 |
| n |
以上两式相加得:2Sn=[f(
| 1 |
| n |
| n-1 |
| n |
| 2 |
| n |
| n-2 |
| n |
| n-1 |
| n |
| 1 |
| n |
| ||
| (n-1)个 |
∴Sn=
| n-1 |
| 2 |
(3)当n≥2时,an=
| 1 |
| (Sn+1)(Sn+1+1) |
| 4 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Tn=a1+a2+…+an=
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| n+2 |
| 2n |
| n+2 |
由Tn<λ(Sn+1+1)得
| 2n |
| n+2 |
| n+2 |
| 2 |
∴λ>
| 4n |
| (n+2)2 |
| 4n |
| n2+4n+4 |
| 4 | ||
n+
|
∵n+
| 4 |
| n |
∴
| 4 | ||
n+
|
| 4 |
| 4+4 |
| 1 |
| 2 |
因此λ>
| 1 |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目