题目内容

设函数f(x)=
ax2+bx+1
x+c
(a>0)
为奇函数,且|f(x)|min=2
2
,数列{an}与{bn}满足如下关系:a1=2,an+1=
f(an)-an
2
bn=
an-1
an+1
.

(1)求f(x)的解析式;
(2)求数列{bn}的通项公式bn
(3)记Sn为数列{an}的前n项和,求证:对任意的n∈N*Sn<n+
3
2
.
分析:(1)由f(x)是奇函数,得b=c=0,由|f(x)|min=2
2
,得a=2,由此可知f(x)的解析式.
(2)由题设条件知bn+1=
an+1-1
an+1+1
=
a
2
n
+1
2an
-1
a
2
n
+1
2an
+1
=
a
2
n
-2an+1
a
2
n
+2an+1
=(
an-1
an+1
)2=
b
2
n
,由此入手可导出bn=(
1
3
)2n-1

(3)对任意的n∈N*Sn<n+
3
2
.
等价于
2
321-1-1
+
2
322-1-1
++
2
32n-1-1
3
2
,由此可合问题得证.
解答:解:(1)由f(x)是奇函数,得b=c=0,
|f(x)|min=2
2
,得a=2,故f(x)=
2x2+1
x
.

(2)∵an+1=
f(an)-an
2
=
a
2
n
+1
2an

bn+1=
an+1-1
an+1+1
=
a
2
n
+1
2an
-1
a
2
n
+1
2an
+1
=
a
2
n
-2an+1
a
2
n
+2an+1
=(
an-1
an+1
)2=
b
2
n

bn=
b
2
n-1
=
b
4
n-2
b
2n-1
1

b1=
1
3
,∴bn=(
1
3
)2n-1

(3)证明:由(2)
an-1
an+1
=(
1
3
)2n-1?an=
1+(
1
3
)
2n-1
1-(
1
3
)
2n-1
=
32n-1+1
32n-1-1
=1+
2
32n-1-1

要证明的问题即为
2
321-1-1
+
2
322-1-1
++
2
32n-1-1
3
2

当n=1时,2n-1=n
当n≥2时,2n-1=(1+1)n-1≥Cn-10+Cn-11=n∴2n-1≥n
32n-13n=3×3n-1=2×3n-1+3n-1≥2×3n-1+1
2
32n-1-1
≤(
1
3
)n-1

2
321-1-1
+
2
322-1-1
++
2
32n-1-1
≤1+
1
3
+(
1
3
)2++(
1
3
)n-1=
[1-(
1
3
)
n
]
1-
1
3

=
3
2
-
3
2
(
1
3
)n
3
2
得证.
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网