题目内容
设函数f(x)=| ax2+bx+1 |
| x+c |
| 2 |
| f(an)-an |
| 2 |
| an-1 |
| an+1 |
(1)求f(x)的解析式;
(2)求数列{bn}的通项公式bn;
(3)记Sn为数列{an}的前n项和,求证:对任意的n∈N*有Sn<n+
| 3 |
| 2 |
分析:(1)由f(x)是奇函数,得b=c=0,由|f(x)|min=2
,得a=2,由此可知f(x)的解析式.
(2)由题设条件知bn+1=
=
=
=(
)2=
,由此入手可导出bn=(
)2n-1
(3)对任意的n∈N*有Sn<n+
.等价于
+
++
<
,由此可合问题得证.
| 2 |
(2)由题设条件知bn+1=
| an+1-1 |
| an+1+1 |
| ||||
|
| ||
|
| an-1 |
| an+1 |
| b | 2 n |
| 1 |
| 3 |
(3)对任意的n∈N*有Sn<n+
| 3 |
| 2 |
| 2 |
| 321-1-1 |
| 2 |
| 322-1-1 |
| 2 |
| 32n-1-1 |
| 3 |
| 2 |
解答:解:(1)由f(x)是奇函数,得b=c=0,
由|f(x)|min=2
,得a=2,故f(x)=
.
(2)∵an+1=
=
∴bn+1=
=
=
=(
)2=
∴bn=
=
═
,
而b1=
,∴bn=(
)2n-1
(3)证明:由(2)
=(
)2n-1?an=
=
=1+
要证明的问题即为
+
++
<
当n=1时,2n-1=n
当n≥2时,2n-1=(1+1)n-1≥Cn-10+Cn-11=n∴2n-1≥n
则32n-1≥3n=3×3n-1=2×3n-1+3n-1≥2×3n-1+1
故
≤(
)n-1
则
+
++
≤1+
+(
)2++(
)n-1=
=
-
(
)n<
得证.
由|f(x)|min=2
| 2 |
| 2x2+1 |
| x |
(2)∵an+1=
| f(an)-an |
| 2 |
| ||
| 2an |
∴bn+1=
| an+1-1 |
| an+1+1 |
| ||||
|
| ||
|
| an-1 |
| an+1 |
| b | 2 n |
∴bn=
| b | 2 n-1 |
| b | 4 n-2 |
| b | 2n-1 1 |
而b1=
| 1 |
| 3 |
| 1 |
| 3 |
(3)证明:由(2)
| an-1 |
| an+1 |
| 1 |
| 3 |
1+(
| ||
1-(
|
| 32n-1+1 |
| 32n-1-1 |
| 2 |
| 32n-1-1 |
要证明的问题即为
| 2 |
| 321-1-1 |
| 2 |
| 322-1-1 |
| 2 |
| 32n-1-1 |
| 3 |
| 2 |
当n=1时,2n-1=n
当n≥2时,2n-1=(1+1)n-1≥Cn-10+Cn-11=n∴2n-1≥n
则32n-1≥3n=3×3n-1=2×3n-1+3n-1≥2×3n-1+1
故
| 2 |
| 32n-1-1 |
| 1 |
| 3 |
则
| 2 |
| 321-1-1 |
| 2 |
| 322-1-1 |
| 2 |
| 32n-1-1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
[1-(
| ||
1-
|
=
| 3 |
| 2 |
| 3 |
| 2 |
| 1 |
| 3 |
| 3 |
| 2 |
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目