题目内容
(1)计算:|(
)-
-lg5|+
-51-log52
(2)若x
+x-
=3,求x
+x-
的值.
| 4 |
| 9 |
| 1 |
| 2 |
| lg22-lg4+1 |
(2)若x
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
分析:(1)利用指数幂和对数的运算性质即可求出;
(2)先对已知等式两边三次方,化简即可求出.
(2)先对已知等式两边三次方,化简即可求出.
解答:解:(1)原式=|[(
)-2]-
-lg5|+
=|
-lg5|+1-lg2-
=
-lg5-lg2-
=-1.
(2)∵x
+x-
=3,
∴(x
+x-
)3=33,
∴x
+3x•x-
+3x
•x-1+x-
=27,
∴x
+x-
=27-3(x
+x-
)=27-3×3=18.
| 3 |
| 2 |
| 1 |
| 2 |
| lg22-2lg2+1- |
| 5 |
| 5log52 |
| 3 |
| 2 |
| 5 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
(2)∵x
| 1 |
| 2 |
| 1 |
| 2 |
∴(x
| 1 |
| 2 |
| 1 |
| 2 |
∴x
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
∴x
| 3 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
点评:熟练掌握指数幂和对数的运算性质是解题的关键.
练习册系列答案
相关题目