题目内容
已知双曲线C1:=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为________.
x2=16y
已知角α终边上一点P(-,y),且sinα=y,求cosα和tanα的值.
如图,椭圆C0:=1(a>b>0,a、b为常数),动圆C1:x2+y2=t,b<t1<a.点A1、A2分别为C0的左、右顶点,C1与C0相交于A、B、C、D四点.
(1) 求直线AA1与直线A2B交点M的轨迹方程;
(2) 设动圆C2:x2+y2=t与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:t+t为定值.
已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是________.
已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线2x-y-4=0上,求抛物线的标准方程.
下图是抛物线形拱桥,当水面在l时,拱顶离水面2 m,水面宽4 m.水位下降1 m后,水面宽________ m.
设Ρ是椭圆上的点.若F1、F2是椭圆的两个焦点,则=________.
已知F1、F2分别是椭圆=1(a>b>0)的左、右焦点,A、B分别是此椭圆的右顶点和上顶点,P是椭圆上一点,O是坐标原点,OP∥AB,PF1⊥x轴,F1A=+,则此椭圆的方程是________________.
已知椭圆=1(a>b>c>0,a2=b2+c2)的左、右焦点分别为F1,F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且PT的最小值为(a-c),则椭圆的离心率e的取值范围是________.