题目内容
若(x+1)4(x+4)8=a0(x+3)12+ a1(x+3)11+ a2(x+3)10+…+ a11(x+3)+a12,则log2(a1+a3+a5+…+a11)=
- A.27
- B.28
- C.8
- D.7
D
令x="-2," 则a0+ a1+ a2+…+ a11+a12=28,
令x="-4,"
则a0-a1+ a2-…-a11+a12=0,
两式相加得2(a1+a3+a5+…+a11)= 28,a1+a3+a5+…+a11= 27.故选D
令x="-2," 则a0+ a1+ a2+…+ a11+a12=28,
令x="-4,"
两式相加得2(a1+a3+a5+…+a11)= 28,a1+a3+a5+…+a11= 27.故选D
练习册系列答案
相关题目