题目内容
(2006•广州二模)已知函数f(x)=
(x≠0).
(Ⅰ)若f(x)=x且x∈R,则称x为f(x)的实不动点,求f(x)的实不动点;
(Ⅱ)在数列{an}中,a1=2,an+1=f(an)(n∈N*),求数列{an}的通项公式.
| (x+1)4+(x-1)4 | (x+1)4-(x-1)4 |
(Ⅰ)若f(x)=x且x∈R,则称x为f(x)的实不动点,求f(x)的实不动点;
(Ⅱ)在数列{an}中,a1=2,an+1=f(an)(n∈N*),求数列{an}的通项公式.
分析:(Ⅰ)由f(x)=
,且f(x)=x,知
=x⇒3x4-2x2-1=0⇒x2=1或x2=-
(舍去),由此能求出f(x)的实不动点.
(Ⅱ)由条件得an+1=
⇒
=
=(
)4,从而有ln
=4ln
,由ln
=ln3≠0,知数列{ln
}是首项为ln3,公比为4的等比数列,由此能求出数列{an}的通项公式.
| x4+6x2+1 |
| 4x3+4x |
| x4+6x2+1 |
| 4x3+4x |
| 1 |
| 3 |
(Ⅱ)由条件得an+1=
| (an+1)4+(an-1)4 |
| (an+1)4-(an-1)4 |
| an+1+1 |
| an+1-1 |
| (an+1)4 |
| (an-1)4 |
| an+1 |
| an-1 |
| an+1+1 |
| an+1-1 |
| an+1 |
| an-1 |
| a1+1 |
| a1-1 |
| an+1 |
| an-1 |
解答:解:(Ⅰ)∵f(x)=
,且f(x)=x,
∴
=x⇒3x4-2x2-1=0⇒x2=1或x2=-
(舍去),
所以x=1或-1,即f(x)的实不动点为x=1或x=-1.
(Ⅱ)由条件得an+1=
⇒
=
=(
)4,
从而有ln
=4ln
,
∵ln
=ln3≠0,
∴数列{ln
}是首项为ln3,公比为4的等比数列,
∴ln
=4n-1ln3⇒
=34n-1⇒an=
(n∈N*).
| x4+6x2+1 |
| 4x3+4x |
∴
| x4+6x2+1 |
| 4x3+4x |
| 1 |
| 3 |
所以x=1或-1,即f(x)的实不动点为x=1或x=-1.
(Ⅱ)由条件得an+1=
| (an+1)4+(an-1)4 |
| (an+1)4-(an-1)4 |
| an+1+1 |
| an+1-1 |
| (an+1)4 |
| (an-1)4 |
| an+1 |
| an-1 |
从而有ln
| an+1+1 |
| an+1-1 |
| an+1 |
| an-1 |
∵ln
| a1+1 |
| a1-1 |
∴数列{ln
| an+1 |
| an-1 |
∴ln
| an+1 |
| an-1 |
| an+1 |
| an-1 |
| 34n-1+1 |
| 34n-1-1 |
点评:本题考查数列递推式的应用,考查运算求解能力和推理论证能力.综合性强,难度大,是高考的重点,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目