题目内容
【题目】已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)>f(x),且f(x+2)为奇函数,f(4)=﹣1,则不等式f(x)<ex的解集为( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(﹣∞,0)
【答案】D
【解析】解:设h(x)=
,则h′(x)=
, ∵f′(x)>f(x),∴h′(x)>0.
∴函数h(x)是R上的增函数,
∵函数f(x+2)是奇函数,
∴f(﹣x+2)=﹣f(x+2),
∴函数关于(2,0)对称,
∴f(0)=﹣f(4)=1,
原不等式等价为h(x)<1,
∴不等式f(x)<ex等价h(x)<1h(x)<h(0),
∴
<1=
.
∵h(x)在R上单调递增,
∴x<0.
故选:D.
【考点精析】通过灵活运用利用导数研究函数的单调性,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减即可以解答此题.
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,,8)数据作了初步处理, 得到下面的散点图及一些统计量的值.
| | | | | | |
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
其中wi=
,
=
(Ⅰ)根据散点图判断,y=a+bx与y=c+d
哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:
(i)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1 , v1),(u2 , v2),,(un , vn),其回归直线v=α+βμ的斜率和截距的最小二乘估计分别为:
=
,
=
﹣
.![]()
【题目】某奶茶店为了解白天平均气温与某种饮料销量之间的关系进行分析研究,记录了2月21日至2月25日
的白天平均气温x(℃)与该奶茶店的这种饮料销量y(杯),得到如表数据:
平均气温x(℃) | 9 | 11 | 12 | 10 | 8 |
销量y(杯) | 23 | 26 | 30 | 25 | 21 |
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
=
x+
;
(2)试根据(1)求出的线性回归方程,预测平均气温约为20℃时该奶茶店的这种饮料销量.
(参考:
=
,
=
﹣
;9×23+11×26+12×30+10×25+8×21=1271,92+112+122+102+82=510)