题目内容
【题目】已知F1,F2为椭圆C:
的左右焦点,点
为其上一点,且有
.
(1)求椭圆C的标准方程;
(2)圆O是以F1,F2为直径的圆,直线l: y =k x + m与圆O相切,并与椭圆C交于不同的两点A,B,若
,求k的值.
【答案】(1)
;(2)
.
【解析】试题分析;(1)设椭圆
的标准方程为
,由已知
,由此能求出椭圆
的标准方程
(2)由直线
与圆
相切,得
,设
由
消去
,得
,利用韦达定理、根的判别式、向量的数量积,结合已知条件能求出
的值..
试题解析;(1)由题意得:
,解得:
,
则椭圆方程为
.
(2)由直线l与圆O相切,得
,即m2=1+k2,
设A(x1,y1)B(x2,y2),
由
消去y,整理得:
,
Δ=(8km)2-4(4m2-12)·(3+4k2)=16(9k2+6)>0恒成立,
所以
,
∵m2=1+k2, ![]()
解得
.
练习册系列答案
相关题目