题目内容
16.若点P(1,1)在圆x2+y2+(λ-1)x+2λy+λ=0外,则λ的取值范围是{λ|$\frac{1}{5}>λ>-\frac{1}{4}$或λ>1}.分析 直接把点代入圆的方程的左侧,表达式大于0,并且圆的方程表示圆,即可求出m的范围.
解答 解:因为点P(1,1)在圆x2+y2+(λ-1)x+2λy+λ=0外,
所以1+1+(λ-1)+2λ+λ>0,解得$λ>-\frac{1}{4}$,
(λ-1)2+4λ2-4λ>0,解得λ>1或$λ<\frac{1}{5}$,
综上$\frac{1}{5}>λ>-\frac{1}{4}$或λ>1
故答案为:{λ|$\frac{1}{5}>λ>-\frac{1}{4}$或λ>1}.
点评 本题考查点与圆的位置关系,注意圆的方程表示圆的条件的应用,考查计算能力.
练习册系列答案
相关题目
11.设x,y满足约束条件:$\left\{\begin{array}{l}x-4y≤-3\\ 3x+5y≤25\\ x≥1\end{array}\right.$,则z=x+y的最大值是( )
| A. | $\frac{22}{5}$ | B. | 2 | C. | $\frac{27}{5}$ | D. | 7 |
1.
某校高三期末统一测试,随机抽取一部分学生的数学成绩分组统计如下表:
(Ⅰ)若全校参加本次考试的学生有600人,试估计这次测试中我区成绩在90分以上的人数;
(Ⅱ)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分的概率.
| 分组 | 频数 | 频率 |
| (0,30] | 3 | 0.03 |
| (30,60] | 3 | 0.03 |
| (60,90] | 37 | 0.37 |
| (90,120] | m | n |
| (120,150] | 15 | 0.15 |
| 合计 | M | N |
(Ⅱ)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分的概率.
8.下列各组函数为同一函数的是( )
| A. | f(x)=x,g(x)=($\sqrt{x}$)2 | B. | f(x)=$\sqrt{x}$•$\sqrt{x+1}$,g(x)=$\sqrt{{x}^{2}+x}$ | ||
| C. | f(x)=1,g(x)=x0 | D. | f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,x>0}\\{-x,x≤0}\end{array}\right.$ |
6.某社团组织50名志愿者参加社会公益活动,帮助那些需要帮助的人,各位志愿者根据各自的实际情况,选择了两个不同的活动项目,相关的数据如下表所示:
(1)先用分层抽样的方法在做义工的志愿者中随机抽取6名志愿者,再从这6名志愿者中又随机抽取2名志愿者,设抽取的2名志愿者中女性人数为ξ,求ξ的数学期望.
(2)如果“宣传慰问”与“做义工”是两个分类变量,那么你有多大把握认为选择做宣传慰问与做义工是与性别有关系的?
附:2×2列联表随机变量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.P(K2≥k)与k对应值表:
| 宣传慰问 | 义工 | 总计 | |
| 男性志愿者 | 11 | 16 | 27 |
| 女性志愿者 | 15 | 8 | 23 |
| 总计 | 26 | 24 | 50 |
(2)如果“宣传慰问”与“做义工”是两个分类变量,那么你有多大把握认为选择做宣传慰问与做义工是与性别有关系的?
附:2×2列联表随机变量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.P(K2≥k)与k对应值表:
| 参考数据 | P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |