题目内容
求函数f(x)=4x2-4ax+a2-2a+2在[0,2]上的最值.
解析:f(x)=4(x-
)2-2a+2.
(1)当
≤0时,即a≤0,f(x)在[0,2]上递增.
∴f(x)max=f(2)=a2-10a+18.
f(x)min=f(0)=a2-2a+2.
(2)当
≥2时,即a≥4时,f(x)在[0,2]上递减.
∴f(x)max=f(0)=a2-2a+2.
f(x)min=f(2)=a2-10a+18.
(3)当0≤
≤2时,即0≤a≤4时,
f(x)min=f(
)=-2a+2.
①当0≤
≤1时,即0≤a≤2时,
f(x)max=f(2)=a2-10a+18;
②当1≤
≤2时,即2≤a≤4时,
f(x)max=a2-2a+2.
练习册系列答案
相关题目