题目内容

11.画出方程(x+y-1)$\sqrt{x-y-2}$=0所表示的曲线.

分析 由原方程可得$\left\{\begin{array}{l}{x+y-1=0}\\{x-y-2≥0}\end{array}\right.$或x-y-2=0,进一步求出$\left\{\begin{array}{l}{x+y-1=0}\\{x-y-2≥0}\end{array}\right.$的轨迹得答案.

解答 解:由(x+y-1)$\sqrt{x-y-2}$=0,
得$\left\{\begin{array}{l}{x+y-1=0}\\{x-y-2>0}\end{array}\right.$或x-y-2=0.
由$\left\{\begin{array}{l}{x+y-1=0}\\{x-y-2>0}\end{array}\right.$,得$\left\{\begin{array}{l}{x+y-1=0}\\{x>\frac{3}{2}}\end{array}\right.$,∴$\left\{\begin{array}{l}{x+y-1=0}\\{x-y-2>0}\end{array}\right.$表示无端点的射线x+y-1=0(x>$\frac{3}{2}$).
∴方程(x+y-1)$\sqrt{x-y-2}$=0的曲线是射线x+y-1=0(x>$\frac{3}{2}$)和直线x-y-2=0.
∴曲线是直线x-y-2=0和直线x+y-1=0在直线x-y-2=0下方的射线.

点评 本题考查曲线的方程和方程的曲线概念,关键是注意根式有意义,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网