题目内容

18.已知各项均不相等的正项数列{an}的首项为$\frac{1}{2}$,当n≥2时,an2=an+1•an-1,数列{bn}对任意n∈N+均有(bn+1-bn+2)lga1+(bn+2-bn)lga3+(bn-bn+1)lga5=0.
(1)若a1≠a2,求证:数列{bn}是等差数列;
(2)在(1)的条件下.已知b1=2,b4=5,a2=$\frac{1}{2}$a1,数列{cn}满足cn=an•bn,记数列{cn}的前n项和为Sn,求证:Sn<3.

分析 (1)由已知得{an}是首项为$\frac{1}{2}$的等比数列,从而由对数运算法则得到$lg[{{a}_{1}}^{{b}_{n+1}-{b}_{n+2}}×({a}_{1}{q}^{4})^{{b}_{n}-{b}_{n+1}}]$=$lg({a}_{1}{q}^{2})^{{b}_{n}-{b}_{n+2}}$,进而利用指数运算法则能证明数列{bn}是等差数列.
(2)由已知得b4=2+3d=5,q=$\frac{{a}_{2}}{{a}_{1}}$=$\frac{1}{2}$,从而得到cn=an•bn=(n+1)•$(\frac{1}{2})^{n}$,由此利用错位相减法能证明Sn<3.

解答 (1)证明:∵各项均不相等的正项数列{an}的首项为$\frac{1}{2}$,当n≥2时,an2=an+1•an-1
∴{an}是首项为$\frac{1}{2}$的等比数列,设公比为q(q>0),
∵数列{bn}对任意n∈N+均有(bn+1-bn+2)lga1+(bn+2-bn)lga3+(bn-bn+1)lga5=0,
∴(bn+1-bn+2)lga1+(bn-bn+1)lga5=(bn-bn+2)lga3
∴$lg[{{a}_{1}}^{{b}_{n+1}-{b}_{n+2}}×({a}_{1}{q}^{4})^{{b}_{n}-{b}_{n+1}}]$=$lg({a}_{1}{q}^{2})^{{b}_{n}-{b}_{n+2}}$,
∴$(\frac{1}{2})^{{b}_{n}-{b}_{n+2}}$•${q}^{4({b}_{n}-{b}_{n+1})}$=$(\frac{1}{2})^{{b}_{n}-{b}_{n+2}}•{q}^{2({b}_{n}-{b}_{n+2})}$.
∴4(bn-bn+1)=2(bn-bn+2),
∴2bn+1=bn+bn+2
∴数列{bn}是等差数列.
(2)证明:∵{bn}是等差数列,{an}是首项为$\frac{1}{2}$的等比数列,b1=2,b4=5,a2=$\frac{1}{2}$a1
∴b4=2+3d=5,解得d=1,q=$\frac{{a}_{2}}{{a}_{1}}$=$\frac{1}{2}$,
∴an=$\frac{1}{2}×(\frac{1}{2})^{n-1}$=($\frac{1}{2}$)n,bn=2+(n-1)×1=n+1,
∴cn=an•bn=(n+1)•$(\frac{1}{2})^{n}$,
∴数列{cn}的前n项和:
Sn=$2×\frac{1}{2}+3×(\frac{1}{2})^{2}+4×(\frac{1}{2})^{3}+…+(n+1)$×$(\frac{1}{2})^{n}$,①
$\frac{1}{2}{S}_{n}=2×(\frac{1}{2})^{2}+3×(\frac{1}{2})^{3}+4×(\frac{1}{2})^{4}$+…+$(n+1)×(\frac{1}{2})^{n+1}$,②
①-②,得:
$\frac{1}{2}{S}_{n}$=1+$(\frac{1}{2})^{2}+(\frac{1}{2})^{3}+…+(\frac{1}{2})^{n}-(n+1)×(\frac{1}{2})^{n+1}$
=1+$\frac{\frac{1}{4}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$-(n+1)×$(\frac{1}{2})^{n+1}$
=1+$\frac{1}{2}-(n+2)×(\frac{1}{2})^{n+1}$,
∴${S}_{n}=3-(n+2)×(\frac{1}{2})^{n}$<3.
∴Sn<3.

点评 本题考查等差数列的证明,考查数列的前n项和小于3的证明,解题时要注意对数运算法则和错位相减法的合理运用,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网