题目内容

已知向量
AB
=(sinθ,cosθ-2sinθ)
CD
=(1,2)

(1)已知C(3,4),求D点坐标.
(2)若
AB
CD
,求tanθ的值.
分析:(1)本题中知道向量
CD
=(1,2)
及C(3,4),根据向量坐标与起点终点坐标之间的公式建立方程求解即可.
(2)本题中给出了向量共线的条件,故要先根据共线的条件建立关于θ的三角恒等式,再进行恒等变形,求出其三角函数值.
解答:解:(1)设D(x,y)则
CD
=(x-3,y-4)=(1,2)

x-3=1
y-4=2
,∴
x=4
y=6

∴D(4,6)(5分)
(2)∵
AB
CD
∴2sinθ=cosθ-2sinθ,
∴4sinθ=cosθ,
tanθ=
1
4
(10分)
点评:本题考点是平面向量共线与其坐标表示,考查了向量坐标表示以及向量共线的坐标表示.属于向量基础知识应用题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网