题目内容
若f(z)=1-
(z∈C),已知z1=2+3i,z2=5-i,则f(
)=
-
i
-
i.
. |
| z |
| ||
|
| 19 |
| 26 |
| 17 |
| 26 |
| 19 |
| 26 |
| 17 |
| 26 |
分析:由已知条件利用两个复数代数形式的乘除法法则,虚数单位i的幂运算性质,求得
,可得
,再根据f(z)=1-
,运算求得f(
)的值.
| ||
|
. | ||||||
(
|
. |
| z |
| ||
|
解答:解:f(z)=1-
(z∈C),已知z1=2+3i,z2=5-i,∴
=
=
=
=
-
i,
∴
=
+
i,则f(
)=1-
=
-
i,
故答案为
-
i.
. |
| z |
| ||
|
| 2-3i |
| 5+i |
| (2-3i)(5-i) |
| (5+i)(5-i) |
| 7-17i |
| 26 |
| 7 |
| 26 |
| 17 |
| 26 |
∴
. | ||||||
(
|
| 7 |
| 26 |
| 17 |
| 26 |
| ||
|
. | ||||||
(
|
| 19 |
| 26 |
| 17 |
| 26 |
故答案为
| 19 |
| 26 |
| 17 |
| 26 |
点评:本题主要考查复数代数形式的混合运算,共轭复数的定义,求函数的值,属于基础题.
练习册系列答案
相关题目