题目内容
如图,双曲线(Ⅰ)双曲线的离心率e= ;
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值
【答案】分析:(Ⅰ)直线B2F1的方程为bx-cy+bc=0,所以O到直线的距离为
,根据以A1A2为直径的圆内切于菱形F1B1F2B2,可得
,由此可求双曲线的离心率;
(Ⅱ)菱形F1B1F2B2的面积S1=2bc,求出矩形ABCD的长与宽,从而求出面积S2=4mn=
,由此可得结论.
解答:解:(Ⅰ)直线B2F1的方程为bx-cy+bc=0,所以O到直线的距离为
∵以A1A2为直径的圆内切于菱形F1B1F2B2,
∴
∴(c2-a2)c2=(2c2-a2)a2
∴c4-3a2c2+a4=0
∴e4-3e2+1=0
∵e>1
∴e=
(Ⅱ)菱形F1B1F2B2的面积S1=2bc
设矩形ABCD,BC=2m,BA=2n,∴
∵m2+n2=a2,∴
,
∴面积S2=4mn=
∴
=
=
∵bc=a2=c2-b2
∴
∴
=
故答案为:
,
点评:本题考查圆与圆锥曲线的综合,考查双曲线的性质,面积的计算,解题的关键是确定几何量之间的关系.
(Ⅱ)菱形F1B1F2B2的面积S1=2bc,求出矩形ABCD的长与宽,从而求出面积S2=4mn=
解答:解:(Ⅰ)直线B2F1的方程为bx-cy+bc=0,所以O到直线的距离为
∵以A1A2为直径的圆内切于菱形F1B1F2B2,
∴
∴(c2-a2)c2=(2c2-a2)a2
∴c4-3a2c2+a4=0
∴e4-3e2+1=0
∵e>1
∴e=
(Ⅱ)菱形F1B1F2B2的面积S1=2bc
设矩形ABCD,BC=2m,BA=2n,∴
∵m2+n2=a2,∴
∴面积S2=4mn=
∴
∵bc=a2=c2-b2
∴
∴
故答案为:
点评:本题考查圆与圆锥曲线的综合,考查双曲线的性质,面积的计算,解题的关键是确定几何量之间的关系.
练习册系列答案
相关题目