题目内容
【题目】设圆
的圆心为A,直线
过点B(1,0)且与
轴不重合,
交圆A于C,D两点,过B作AC的平行线交AD于点E.
(Ⅰ)证明:
为定值,并写出点E的轨迹方程;
(Ⅱ)设点E的轨迹为曲线C1,直线
交C1于M,N两点,过B且与
垂直的直线与C1交于P,Q两点, 求证:
是定值,并求出该定值.
【答案】(I)
(
);(II)![]()
【解析】
(I)根据几何关系,即可证明
为定值,再利用椭圆的定义即可求出点E的轨迹方程;
(Ⅱ)利用点斜式设出直线
的方程,与椭圆方程联立方程组,得到关于
的一元二次方程,利用根与系数关系以及弦长公式表示出
,同理可得
,代入
中进行化简即可证明
为定值。
(I)因为
,
,故
,
所以
,故
.
又圆
的标准方程为
,从而
,
所以
,由题设得
,
,
,
由椭圆定义可得点
的轨迹方程为:
(
).
(II)依题意:
与
轴不垂直,设
的方程为
,
,
.
由
得,
.
则
,
.
所以
.
同理:
故
(定值)
【题目】大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了100名魔方爱好者进行调查,得到的部分数据如表所示:已知在全部100人中随机抽取1人抽到喜欢盲拧的概率为
.
喜欢盲拧 | 不喜欢盲拧 | 总计 | |
男 | 10 | ||
女 | 20 | ||
总计 | 100 |
表(1)
并邀请这100人中的喜欢盲拧的人参加盲拧三阶魔方比赛,其完成时间的频率分布如表所示:
完成时间(分钟) | [0,10) | [10,20) | [20,30) | [30,40] |
频率 | 0.2 | 0.4 | 0.3 | 0.1 |
表(2)
(Ⅰ)将表(1)补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为是否喜欢盲拧与性别有关?
(Ⅱ)现从表(2)中完成时间在[30,40] 内的人中任意抽取2人对他们的盲拧情况进行视频记录,记完成时间在[30,40]内的甲、乙、丙3人中恰有一人被抽到为事件A,求事件A发生的概率.
(参考公式:
,其中
)
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |