题目内容

在直角坐标平面XOY上的一列点A1(1,a1),A2(2,a2),A3(3,a3),…An(n,an),…简记为{An},若由bn=
AnAn+1
j
构成的数列{bn}满足bn+1>bn,(n=1,2,…,n∈N) (其中
j
是与y轴正方向相同的单位向量),则称{An}为“和谐点列”.
(1)试判断:A1(1,1),A2(2,
1
2
)
A3(3,
1
22
)
An(n,
1
2n-1
)
…是否为“和谐点列”?并说明理由.
(2)若{An}为“和谐点列”,正整数m,n,p,q满足:≤m<n<p<q1,且m+q=n+p.求证:aq+am>an+ap
分析:(1)由An(n,
1
2n-1
),An+1(n+1,
1
2n
)
,知
AnAn+1
=(1,-
1
2n
)
,所以bn=
AnAn+1
j
= -
1
2n
,由此知{An}为“和谐点列”.
(2)由An(n,an),An+1(n+1,an+1),知
AnAn+1
=(1,an+1-an)
.由
j
=(0,1)
,知bn=an+1-an.由此入手能够证明aq+am>an+ap
解答:解:(1)∵An(n,
1
2n-1
),An+1(n+1,
1
2n
)

AnAn+1
=(1,-
1
2n
)

又∵
j
=(0,1)
,∴bn=
AnAn+1
j
= -
1
2n

bn+1=-
1
2n+1
bn=-
1
2n

显然bn+1>bn,∴{An}为“和谐点列”.
(2)证明:∵An(n,an),An+1(n+1,an+1),
AnAn+1
=(1,an+1-an)
.又因为
j
=(0,1)

∴bn=an+1-an
∵1≤m,且m+q=n+p.
∴q-p=n-m>0.
∴aq-qp=aq-qq-1+aq-1-aq-2+…+ap+1-ap=bq-1+bq-2+…+bp
∵{An}为“和谐点列”∴bn+1>bn
∴bq-1+bq-2+…+bm=(q-p)bp
即aq-ap≥(q-p)bp
同理可证:an-am=bn-1+bn-2+…+bm≤(n-m)bn-1
∵bp>bn-1,n-m=q-p.
∴(q-p)bq>(n-m)bn-1
∴aq-ap>an-am
∴aq+am>an+ap
点评:本题考查数列和不等式的综合运用,解题时要认真审题,注意“和谐点列”的理解和合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网