题目内容
等差数列{an}中,已知an=3n-1,若数列{
}的前n项和为
,则n的值为( )
| 1 |
| anan+1 |
| 4 |
| 25 |
分析:由an=3n-1,知
=
=
(
-
),再由数列{
}的前n项和为
,利用裂项求和法建立方程即能求出n的值.
| 1 |
| anan+1 |
| 1 |
| (3n-1)(3n+2) |
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
| 1 |
| anan+1 |
| 4 |
| 25 |
解答:解:∵an=3n-1,
∴
=
=
(
-
),
∵数列{
}的前n项和为
,
∴Sn=
(
-
)+
(
-
)+
(
-
)+…+
(
-
)
=
(
-
)=
,
解得n=16.
故选D.
∴
| 1 |
| anan+1 |
| 1 |
| (3n-1)(3n+2) |
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
∵数列{
| 1 |
| anan+1 |
| 4 |
| 25 |
∴Sn=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 8 |
| 1 |
| 3 |
| 1 |
| 8 |
| 1 |
| 11 |
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3n+2 |
| 4 |
| 25 |
解得n=16.
故选D.
点评:本题考查数列求和的应用,是中档题.解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关题目