题目内容
已知:如图所示,从Rt△ABC的两直角边AB,AC向外作正方形ABFG及ACDE,CF,BD分别交AB,AC于P,Q.求证:AP=AQ.
∵∠BAC+∠BAG=90°+90°=180°,
∴C,A,G三点共线.同理B,A,E三点共线.
∵AB∥GF,AC∥ED,∴
=
,
=
,
即AP=
,AQ=
.
又∵CA=ED=AE,GF=BA=AG,
∴CG=CA+AG=AE+BA=BE.
∴AP=AQ.
∴C,A,G三点共线.同理B,A,E三点共线.
∵AB∥GF,AC∥ED,∴
即AP=
又∵CA=ED=AE,GF=BA=AG,
∴CG=CA+AG=AE+BA=BE.
∴AP=AQ.
证明 ∵∠BAC+∠BAG=90°+90°=180°,
∴C,A,G三点共线.同理B,A,E三点共线.
∵AB∥GF,AC∥ED,∴
=
,
=
,
即AP=
,AQ=
.
又∵CA=ED=AE,GF=BA=AG,
∴CG=CA+AG=AE+BA=BE.
∴AP=AQ.
∴C,A,G三点共线.同理B,A,E三点共线.
∵AB∥GF,AC∥ED,∴
即AP=
又∵CA=ED=AE,GF=BA=AG,
∴CG=CA+AG=AE+BA=BE.
∴AP=AQ.
练习册系列答案
相关题目