题目内容
设x,y,z是正实数,且xyz=1.
证明:
+
+
≥
.
证明:
| x3 |
| (1+y)(1+z) |
| y3 |
| (1+z)(1+x) |
| z3 |
| (1+x)(1+y) |
| 3 |
| 4 |
分析:从不等式的结构可知是轮换式,故可根据均值不等式得:
+
+
≥
,
+
+
≥
,
+
+
≥
,三式相加可证得结论.
| x3 |
| (1+y)(1+z) |
| 1+y |
| 8 |
| 1+z |
| 8 |
| 3x |
| 4 |
| y3 |
| (1+z)(1+x) |
| 1+x |
| 8 |
| 1+z |
| 8 |
| 3y |
| 4 |
| z3 |
| (1+x)(1+y) |
| 1+x |
| 8 |
| 1+y |
| 8 |
| 3z |
| 4 |
解答:证明:根据均值不等式得:
+
+
≥
①
+
+
≥
②
+
+
≥
③
①+②+③得
+
+
≥
-
∵x+y+z≥3
=3
∴
+
+
≥
| x3 |
| (1+y)(1+z) |
| 1+y |
| 8 |
| 1+z |
| 8 |
| 3x |
| 4 |
| y3 |
| (1+z)(1+x) |
| 1+x |
| 8 |
| 1+z |
| 8 |
| 3y |
| 4 |
| z3 |
| (1+x)(1+y) |
| 1+x |
| 8 |
| 1+y |
| 8 |
| 3z |
| 4 |
①+②+③得
| x3 |
| (1+y)(1+z) |
| y3 |
| (1+z)(1+x) |
| z3 |
| (1+x)(1+y) |
| x+y+z |
| 2 |
| 3 |
| 4 |
∵x+y+z≥3
| 3 | xyz |
∴
| x3 |
| (1+y)(1+z) |
| y3 |
| (1+z)(1+x) |
| z3 |
| (1+x)(1+y) |
| 3 |
| 4 |
点评:本题主要考查了基本不等式的证明,解题的关键利用均值不等式,同时考查了分析问题的能力,属于中档题.
练习册系列答案
相关题目