题目内容
(03年上海卷)某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 .(结果用分数表示)
(03年上海卷)(12分)
已知平行六面体ABCD―A1B1C1D1中,A1A⊥平面ABCD,AB=4,AD=2.若B1D⊥BC,直线B1D与平面ABCD所成的角等于30°,求平行六面体ABCD―A1B1C1D1的体积.
(03年上海卷理)(14分)
已知数列(n为正整数)是首项是a1,公比为q的等比数列.
(1)求和:
(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.
(03年上海卷)(14分)
如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.
(1)若最大拱高h为6米,则隧道设计的拱
宽l是多少?
(2)若最大拱高h不小于6米,则应如何设
计拱高h和拱宽l,才能使半个椭圆形隧
道的土方工程量最最小?
(半个椭圆的面积公式为,柱体体积为:底面积乘以高.本题结果精确到0.1米)
在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点.已知|AB|=2|OA|,且点B的纵坐标大于零.
(1)求向量的坐标;
(2)求圆关于直线OB对称的圆的方程;
(3)是否存在实数a,使抛物线上总有关于直线OB对称的两个点?若不存在,说明理由:若存在,求a的取值范围.