题目内容

已知实数a,b满足-1≤a≤1,-1≤b≤1,则函数y=
1
3
x3-ax2+bx+5有极值的概率(  )
分析:本题考查的知识点是几何概型的意义,关键是要找出函数y=
1
3
x3-ax2+bx+5有极值对应的可行域面积的大小和实数a,b满足-1≤a≤1,-1≤b≤1对应的图形面积的大小.
解答:解:∵函数y=
1
3
x3-ax2+bx+5有极值
∴y′=x2-2ax+b,存在零点,
即x2-2ax+b=0有实数解,其充要条件是△=4a2-4b≥0.
即 a2≥b.
如图所示,区域-1≤a≤1,-1≤b≤1的面积(图中正方形所示)为4
2∫01(1-x2)dx=2×(x-
1
3
x2
)|01=
4
3

而区域a2≥b,
在条件-1≤a≤1,-1≤b≤1下的面积(图中阴影所示)为:
2+2∫01x2dx=2+2×(
1
3
x2
)|01=2+
2
3
=
8
3

所求概率为
8
3
4
=
2
3

故选C.
点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、含面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据公式求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网