题目内容

在数列{an}中,若a1=1,an+1•an+an+1+1=0,则a2009=(  )
A、-2B、-1C、-0.5D、1
分析:根据所给的数列的首项和递推式,写出这个数列的第二项,第三项,依次写下去,得到这个数列是一个周期变化的数列,看出要求的项是数列中的那一项,得到结果.
解答:解:∵a1=1,an+1•an+an+1+1=0,①
∴a2=-
1
2
,②
把②代入①得到a3=-2,
依此类推a4=1 ,a5=-
1
2
, a6=-2

可以看出这个数列的项是乙3为周期的,
2009÷3=669…2,
∴a2009=-
1
2

故选C.
点评:本题考查归纳推理,在解题过程中注意数列的周期性变化的特点,本题的运算量不大,若出现是一个送分题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网