题目内容

0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要
(1)当a=0时,函数为一次函数f(x)=-2x+2为递减函数,
(2)当a>0时,二次函数开口向上,先减后增,故函数对称轴为x=
1-a
a
≥4
,解得0<a≤
1
5

当a<0时,函数开口向下,先增后减,
函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上不可能为减函数,故舍去.
故函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上的减函数的充要条件为0≤a≤
1
5

由0<a≤
1
5
能推出0≤a≤
1
5
,但由0<a≤
1
5
不能推出0≤a≤
1
5

故0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数的充分不必要条件.
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网