题目内容
求函数y=
cos2x+
sinxcosx+1的最小正周期,最大值和最小值.
| 1 |
| 2 |
| ||
| 2 |
函数y=
cos2x+
sinxcosx+1=
+
sin2x+1=
sin(2x+
)+
,
故函数的最小正周期T=
=π,最大值为
+
=
,最大值为-
+
=
.
| 1 |
| 2 |
| ||
| 2 |
| 1+cos2x |
| 4 |
| ||
| 4 |
| 1 |
| 2 |
| π |
| 6 |
| 5 |
| 4 |
故函数的最小正周期T=
| 2π |
| 2 |
| 1 |
| 2 |
| 5 |
| 4 |
| 7 |
| 4 |
| 1 |
| 2 |
| 5 |
| 4 |
| 3 |
| 4 |
练习册系列答案
相关题目