题目内容
数学归纳法证明(n+1)+(n+2)+…+(n+n)=
的第二步中,当n=k+1时等式左边与n=k时等式左边的差等于________.
3k+2
分析:根据条件分别求出n=k时左边的式子:(k+1)+(k+2)+…+(k+k),n=k+1时左边的式子:左边=(k+1+1)+(k+1+2)+…+(k+1+k-1)+(k+1+k)+(k+1+k+1),从而可求出当n=k+1时等式左边与n=k时等式左边的差.
解答:由题意,n=k时,则(k+1)+(k+2)+…+(k+k)=
当n=k+1时,左边=(k+1+1)+(k+1+2)+…+(k+1+k-1)+(k+1+k)+(k+1+k+1)
=(k+2)+(k+3)+…+(k+k)+(k+1+k)+(k+1+k+1)
=(k+1)+(k+2)+(k+3)+…+(k+k)+(k+1+k)+(k+1+k+1)-(k+1)
=
+3k+2
∴当n=k+1时等式左边与n=k时等式左边的差等于3k+2
故答案为 3k+2
点评:本题以等式为载体,考查用数学归纳法证明等式,分别写出n=k+1,n=k时,左边的式子是解题的关键.
分析:根据条件分别求出n=k时左边的式子:(k+1)+(k+2)+…+(k+k),n=k+1时左边的式子:左边=(k+1+1)+(k+1+2)+…+(k+1+k-1)+(k+1+k)+(k+1+k+1),从而可求出当n=k+1时等式左边与n=k时等式左边的差.
解答:由题意,n=k时,则(k+1)+(k+2)+…+(k+k)=
当n=k+1时,左边=(k+1+1)+(k+1+2)+…+(k+1+k-1)+(k+1+k)+(k+1+k+1)
=(k+2)+(k+3)+…+(k+k)+(k+1+k)+(k+1+k+1)
=(k+1)+(k+2)+(k+3)+…+(k+k)+(k+1+k)+(k+1+k+1)-(k+1)
=
∴当n=k+1时等式左边与n=k时等式左边的差等于3k+2
故答案为 3k+2
点评:本题以等式为载体,考查用数学归纳法证明等式,分别写出n=k+1,n=k时,左边的式子是解题的关键.
练习册系列答案
相关题目