题目内容
.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
![]()
(1)求图中x的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为X,求X的分布列与数学期望.
解 (1)由频率分布直方图知(0.006×3+0.01+x+0.054)×10=1,解得x=0.018.
(2)由频率分布直方图知成绩不低于80分的学生人数为(0.018+0.006)×10×50=12,成绩在90分以上(含90分)的人数为0.006×10×50=3.
因此X可能取0,1,2三个值.
X的分布列为
| X | 0 | 1 | 2 |
| P |
|
|
|
练习册系列答案
相关题目
中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”.某校对全校学生过马路方式进行调查,在所有参与调查的人中,“跟从别人闯红灯”“从不闯红灯”“带头闯红灯”人数如表所示:
|
| 跟从别人闯红灯 | 从不闯红灯 | 带头闯红灯 |
| 男生 | 800 | 440 | 200 |
| 女生 | 200 | 160 | 200 |
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知“跟从别人闯红灯”的人中抽取50人,求n的值.
(2)在“带头闯红灯”的人中,将男生的200人编号为001,002,…,200;将女生的200人编号为201,202,…,400,用系统抽样的方法抽取5人参加“文明交通”宣传活动,若抽取的第一个人的编号为30,把抽取的5人看成一个总体,从这5人中任选取2人,求至少有一名女生的概率.