题目内容
已知函数f(x)=x3+ax2+bx+c,当x=﹣1时,f(x)的极大值为7;当x=3时,f(x)有极小值.求:
(1)a,b,c的值;
(2)函数f(x)的极小值.
考点:
函数在某点取得极值的条件;函数解析式的求解及常用方法;利用导数研究函数的极值.
专题:
计算题.
分析:
(1)因为当x=﹣1时,f(x)有极大值,当x=3时,f(x)有极小值,所以把x=﹣1和3代入导数,导数都等于0,就可得到关于a,b,c的两个等式,再根据极大值等于7,又得到一个关于a,b,c的等式,三个等式联立,即可求出a,b,c的值.
(2)因为函数再x=3处有极小值,所以把x=3代入原函数,求出的函数值即为函数的极小值.
解答:
解:(1)∴f(x)=x3+ax2+bx+c
∵f'(x)=3x2+2ax+b
而x=﹣1和x=3是极值点,
所以
解之得:a=﹣3,b=﹣9
又f(﹣1)=﹣1+a﹣b+c=﹣1﹣3+9+c=7,故得c=2
(2)由(1)可知f(x)=x3﹣3x2﹣9x+2而x=3是它的极小值点,所以函数f(x)的极小值为﹣25.
点评:
本题主要考查导数在求函数的极值中的应用,做题时要细心.理解极值与导数的对应关系及极值的判断规则是解题的关键,本题是导数应用题,常见题型
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|