题目内容
在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=
,sinB=
cosC.
(1)求tanC的值;
(2)若a=
,求△ABC的面积.
| 2 |
| 3 |
| 5 |
(1)求tanC的值;
(2)若a=
| 2 |
(1)∵A为三角形的内角,cosA=
,
∴sinA=
=
,
又
cosC=sinB=sin(A+C)=sinAcosC+cosAsinC=
cosC+
sinC,
整理得:
cosC=
sinC,
则tanC=
;
(2)由tanC=
得:cosC=
=
=
=
,
∴sinC=
=
,
∴sinB=
cosC=
,
∵a=
,∴由正弦定理
=
得:c=
=
=
,
则S△ABC=
acsinB=
×
×
×
=
.
| 2 |
| 3 |
∴sinA=
| 1-cos2A |
| ||
| 3 |
又
| 5 |
| ||
| 3 |
| 2 |
| 3 |
整理得:
2
| ||
| 3 |
| 2 |
| 3 |
则tanC=
| 5 |
(2)由tanC=
| 5 |
|
|
|
| ||
| 6 |
∴sinC=
| 1-cos2C |
| ||
| 6 |
∴sinB=
| 5 |
| ||
| 6 |
∵a=
| 2 |
| a |
| sinA |
| c |
| sinC |
| asinC |
| sinA |
| ||||||
|
| 3 |
则S△ABC=
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| ||
| 6 |
| ||
| 2 |
练习册系列答案
相关题目