题目内容
设函数f(x)=| 3x | ||
3x+
|
| OP |
| 1 |
| 2 |
| OP1 |
| OP2 |
| 1 |
| 2 |
(1)求证:P点的纵坐标为定值,并求出这个值;
(2)若Sn=
| n |
| i=1 |
| i |
| n |
(3)记Tn为数列{
| 1 | ||||||||
(Sn+
|
| ||
| 2 |
分析:(1)可设
=(
,yp),由
=
(
+
),可得x1+x2=1,yp=
,代入解析式验证即可.
(2)由(1)知y1+y2=f(x1)+f(x2)=1,f(1)=
,而由Sn=f(
)+f(
)++f(
)+f(
),可变形为Sn=f(
)+f(
)++f(
)+f(
)两式相加可得到解决.
(3)由(2)知Sn=
所以可得到Sn+
=
,Sn+1+
=
可变形为
裂项求得Tn,再研究恒成立问题.
| OP |
| 1 |
| 2 |
| OP |
| 1 |
| 2 |
| OP1 |
| OP2 |
| y1+y2 |
| 2 |
(2)由(1)知y1+y2=f(x1)+f(x2)=1,f(1)=
3-
| ||
| 2 |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n |
| n |
| n-1 |
| n |
| n-2 |
| n |
| 1 |
| n |
| n |
| n |
(3)由(2)知Sn=
n+2-
| ||
| 2 |
| ||
| 2 |
| n+2 |
| 2 |
| ||
| 2 |
| n+3 |
| 2 |
| 1 | ||||||||
(Sn+
|
| 4 |
| (n+2)(n+3) |
解答:解:(1)设
=(
,yp),
又∵
=
(
+
),
∴x1+x2=1,yp=
,
又y1+y2=
+
=1,
∴yp=
=
(2)由x1+x2=1,得y1+y2=f(x1)+f(x2)=1,f(1)=
∴Sn=f(
)+f(
)++f(
)+f(
),
又Sn=f(
)+f(
)++f(
)+f(
)
∴2Sn=
+2f(1)=n+2-
,即Sn=
(3)∵Sn+
=
,∴Sn+1+
=
,∴
=
,
从而Tn=4[
+
++
]=
•
,
由Tn<a(Sn+2+
),Sn+2+
>0,∴a>
=
•
=
•
令g(n)=n+
,易证g(n)在[2
,+∞)上是增函数,在(0,2
)上是减函数,我
且g(3)=7,g(4)=7,∴g(n)的最大值为7,即
•
≤
,
∴a>
| OP |
| 1 |
| 2 |
又∵
| OP |
| 1 |
| 2 |
| OP1 |
| OP2 |
∴x1+x2=1,yp=
| y1+y2 |
| 2 |
又y1+y2=
| 3x1 | ||
3x1+
|
| 3x2 | ||
3x2+
|
∴yp=
| y1+y2 |
| 2 |
| 1 |
| 2 |
(2)由x1+x2=1,得y1+y2=f(x1)+f(x2)=1,f(1)=
3-
| ||
| 2 |
∴Sn=f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n |
| n |
又Sn=f(
| n-1 |
| n |
| n-2 |
| n |
| 1 |
| n |
| n |
| n |
∴2Sn=
| ||
| n-1个 |
| 3 |
n+2-
| ||
| 2 |
(3)∵Sn+
| ||
| 2 |
| n+2 |
| 2 |
| ||
| 2 |
| n+3 |
| 2 |
| 1 | ||||||||
(Sn+
|
| 4 |
| (n+2)(n+3) |
从而Tn=4[
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| (n+2)(n+3) |
| 4 |
| 3 |
| n |
| n+3 |
由Tn<a(Sn+2+
| ||
| 2 |
| ||
| 2 |
| Tn | ||||
Sn+2+
|
| 8 |
| 3 |
| n |
| (n+3)(n+4) |
| 8 |
| 3 |
| 1 | ||
n+
|
令g(n)=n+
| 12 |
| n |
| 3 |
| 3 |
且g(3)=7,g(4)=7,∴g(n)的最大值为7,即
| 8 |
| 3 |
| 1 | ||
n+
|
| 4 |
| 21 |
∴a>
| 4 |
| 21 |
点评:本题主要考查函数与数列间的渗透,两者都有规律可循经常结合为难度较大的题目,解决思路往往是通过函数的规律,由点的坐标建立数列模型来考查数列的通项或前N项和,进而设置不等式恒成立问题,考查数列的增减性或放缩的方法.
练习册系列答案
相关题目
设函数f(x)=
在x=1处连续,则a的值为( )
|
A、
| ||
B、
| ||
C、-
| ||
D、-
|