题目内容

如图示,在△ABC中,若A,B两点坐标分别为(2,0),(-3,4)点C在AB上,且OC平分∠BOA.
(1)求∠AOB的余弦值;  
(2)求点C的坐标.
分析:(1)由题意可得cos∠AOB=
OA
OB
|
OA
||
OB
|
,把已知代入可求
(2)设点C(x,y),由OC平分∠BOA可得cos∠AOC=cos∠BOC即
OA
OC
|
OA
|•|
OC
|
=
OB
OC
|
OB
|•|
OC
|
;再由点C在AB即
AC,
BC
共线,建立关于x,y的关系,可求
解答:解:(1)由题意可得,
OA
=(2,0)
OB
=(-3,4)

cos∠AOB=
OA
OB
|
OA
||
OB
|
=
2×(-3)+0×4
2×5
=-
3
5

(2)设点C(x,y),由OC平分∠BOA可得cos∠AOC=cos∠BOC
cos∠AOC=
OA
OC
|
OA
|•|
OC
|
cos∠BOC=
OB
OC
|
OB
|•|
OC
|

OA
OC
|
OA
|•|
OC
|
=
OB
OC
|
OB
|•|
OC
|

(2,0)•(x,y)
2
=
(-3,4)•(x,y)
5

∴y=2x①
又点C在AB即
AC,
BC
共线,
BC
=(x+3,y-4),
AC
=(x-2,y)

∴4x+5y-8=0②
由①②解得x=
4
7
,y=
8
7

∴点C的坐标为(
4
7
8
7
)
点评:本题注意考查了向量的夹角公式的坐标表示的应用,向量共线的坐标表示在三角形中的应用,解题的关键是借助于已知图象中的条件,灵活的应用向量的基本知识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网