题目内容
在(x-| 2 | x |
分析:利用二项展开式的通项公式求出第r+1项,令x的指数为3得到x3的系数.
解答:解:Tr+1=
x7-r(-
)r=(-2)r
x7-2r,
令7-2r=3,
解得r=2,
故所求的系数为(-2)2C72=84
故答案为84
| C | r 7 |
| 2 |
| x |
| C | r 7 |
令7-2r=3,
解得r=2,
故所求的系数为(-2)2C72=84
故答案为84
点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题.
练习册系列答案
相关题目