题目内容
f(x)是定义在R上的奇函数,f(1)=2,且f(x+1)=f(x+5),则f(12)+f(3)的值是______.
∵f(x)是定义在R上的奇函数,f(1)=2,
且f(x+1)=f(x+5),
∴f(12)+f(3)=f(0)+f(-1)=0-f(1)=0-2=-2.
故答案为:-2.
且f(x+1)=f(x+5),
∴f(12)+f(3)=f(0)+f(-1)=0-f(1)=0-2=-2.
故答案为:-2.
练习册系列答案
相关题目
设f(x)是定义在R上的函数,且对任意实数x,恒有f(x+2)=-3f(x).当x∈[0,2]时,f(x)=2x-x2.则f(0)+f(-1)+f(-1)+…+f(-2014)=( )
A、-
| ||||
B、-
| ||||
C、-
| ||||
D、-
|