题目内容

设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值(  )
分析:由已知中f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,我们根据奇函数的单调性的性质,可以判断出函数在R上的单调性,进而根据x1+x2>0,即可判断出f(x1)+f(x2)的符号.
解答:解:∵f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,
则函数f(x)在R上单调递减,
若x1+x2>0,则x1>-x2
∴f(x1)>f(-x2)=-f(x2
∴f(x1)+f(x2)>0
故选C.
点评:本题考查的知识点是奇偶性与单调性的综合,其中根据奇函数在对称区间上单调性相同,判断出函数在R上的单调性,是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网