题目内容
设函数.
(1)求不等式的解集;
(2)若恒成立,求实数的取值范围.
如图,已知与圆相切于点,经过点的割线交圆于点,的平分线分别交于点.
(1)证明:;
(2)若,求的值.
同时具有性质①最小正周期是;②图象关于直线对称;③在上是增函数的一个函数为( )
A. B.
C. D.
在数列中,若为常数),则称为“等方差数列”.下列是对“等方差数列”的判断:
①若是等方差数列,则是等差数列
②若数列是等方差数列,则数列是等方差数列
③是等方差数列
④若是等方差数列,则为常数)也是等方差数列.其中正确命题的个数为( )
A. B. C. D.
在某次测量中得到的样本数据如下:,若样本数据恰好是样本数据每个都减后所得数据,则、两样本的下列数字特征对应相同的是( )
A.平均数 B.标准差 C.众数 D.中位数
某学校研究性学习小组对该校高三学生视力情况进行调查,在髙三的全体名学生中随机抽取了名学生的体检表,并得到如图的频率分布直方图.
(1)若直方图中后四组的频数成等差数列,试估计全年级视力在以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在名和名的学生进行了调查,得到表中数据,根据表中的数据,能否有的把握认为视力与学习成绩有关系?
(3)在(2)中调查的名学生中,按照分层抽样在不近视的学生中抽取了人,进一步调查他们良好的护眼习惯,求在这人中任取人,恰好有人的年级名次在名的概率.
附:
已知,直线与函数的图象在处相切,设,若在区间上,不等式恒成立,则实数( )
A.有最小值 B.有最小值
C.有最大值 D.有最大值
如图,四棱锥中,平面为线段上一点,为的中点.
(1)证明:;
(2)求四面体的体积.
某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒个单位的去污剂,空气中释放的浓度 (单位:毫克/立方米)随着时间单位:天)变化的函数关系式,近似为
,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和. 由实验知,当空气中去污剂的浓度不低于(毫克/立方米)时,它才能起到去污作用.
(1)若一次喷洒个单位的去污剂,则去污时间可达几天?
(2)若第一次喷洒个单位的去污剂,天后再唢洒个单位的去污剂,要使接来的天中能够持续有效去污,试求的最小值(精确到,参考数据: 取).