题目内容
(Ⅰ)集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0}.若A∪B=A∩B,求a的值.
(Ⅱ)若集合M={x|x≤5或x≥7},N={x|m+1≤x≤2m-1},且M∪N=R,求实数m的取值范围.
(Ⅱ)若集合M={x|x≤5或x≥7},N={x|m+1≤x≤2m-1},且M∪N=R,求实数m的取值范围.
(Ⅰ)∵A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0}={2,3},A∪B=A∩B,∴A=B={2,3},
故2和3是方程 x2-ax+a2-19=0的两个根,由一元二次方程根与系数的关系可得
,∴a=5.
(Ⅱ)∵M={x|x≤5或x≥7},N={x|m+1≤x≤2m-1},且M∪N=R,∴
,即
,∴m=4.
故2和3是方程 x2-ax+a2-19=0的两个根,由一元二次方程根与系数的关系可得
|
(Ⅱ)∵M={x|x≤5或x≥7},N={x|m+1≤x≤2m-1},且M∪N=R,∴
|
|
练习册系列答案
相关题目