ÌâÄ¿ÄÚÈÝ
·ÖÎö£ºÍ¨¹ý0£¼a£¼1£¬1£¼a£¼3ÇÒa¡Ù2£¬·Ö±ðÇó³ötan¦È£¬¹¹Ô캯Êýͨ¹ýº¯ÊýµÄµ¥µ÷ÐÔÇó³öº¯ÊýµÄ×î´óÖµ£¬ËµÃ÷ÊÓ½Ç×î´ó£®
½â´ð£º£¨±¾Ð¡ÌâÂú·Ö16·Ö£©
½â£ºÒòΪy=tanxÔÚx¡Ê£¨0£¬
£©ÊÇÔöº¯Êý£¬
£¨1£©µ±0£¼a£¼1ʱ£¬Èçͼ1£¬tan¦È=tan£¨¦Á-¦Â£©=
=
£¬
ÁÊýf£¨x£©=x+
£¬¿ÉÖ¤Ã÷º¯Êýf£¨x£©ÔÚ£¨0£¬
£©Êǵ¥µ÷¼õº¯Êý£¬
ÔÚ(
£¬+¡Þ)Êǵ¥µ÷Ôöº¯Êý£®
Èô
¡Ü1ʱ£¬¼´2-
¡Üa£¼1ʱ£¬
f£¨x£©ÔÚ[1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬´Ëʱµ±x=1ʱtan¦ÈÈ¡µÃ×î´óÖµ£¬ÔòÊӽǦÈ×î´ó£®
Èô
£¾1ʱ£¬¼´0£¼a£¼2-
£¬
¢Ùµ±x=
ʱ£¬tan¦ÈÈ¡µÃ×î´óÖµ£¬ÔòÊӽǦÈ×î´ó£®
¢Úµ±a=1ʱ£¬tan¦È=
£¨x¡Ý1£©£¬µ±x=1ʱtan¦ÈÈ¡µÃ×î´óÖµ£¬ÔòÊӽǦÈ×î´ó£®
£¨2£©µ±1£¼a£¼3ÇÒa¡Ù2ʱÈçͼ2£¬
tan¦È¨Ttan£¨¦Á+¦Â£©=
=
£¬
Áîg£¨x£©=x-
£¬
ÔÚ[1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ËùÒÔµ±x=1ʱ£¬ymax£¾0£¬tan¦È£¾0£¬¹Ê¦ÈΪÈñ½Ç£®
¡àµ±x=1ʱ£¬g£¨x£©È¡µÃ×îСֵ£¬tan¦ÈÈ¡µÃ×î´óÖµ£¬ÔòÊӽǦÈ×î´ó£®
×ÛÉÏ£ºµ±2-
¡Üa£¼3ʱ£¬ÇÒx=1ʱ£¬ÊӽǦÈ×î´ó£»
µ±0£¼a£¼2-
£¬Ê±£¬ÇÒx=
ʱ£¬ÊӽǦÈ×î´ó£®
½â£ºÒòΪy=tanxÔÚx¡Ê£¨0£¬
| ¦Ð |
| 2 |
£¨1£©µ±0£¼a£¼1ʱ£¬Èçͼ1£¬tan¦È=tan£¨¦Á-¦Â£©=
| ||||
1+
|
| 2 | ||
x+
|
ÁÊýf£¨x£©=x+
| (1-a)(3-a) |
| x |
| (1-a)(3-a) |
ÔÚ(
| (1-a)(3a) |
Èô
| (1-a)(3-a) |
| 2 |
f£¨x£©ÔÚ[1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬´Ëʱµ±x=1ʱtan¦ÈÈ¡µÃ×î´óÖµ£¬ÔòÊӽǦÈ×î´ó£®
Èô
| (1-a)(3-a) |
| 2 |
¢Ùµ±x=
| (1-a)(3-a) |
¢Úµ±a=1ʱ£¬tan¦È=
| 2 |
| x |
£¨2£©µ±1£¼a£¼3ÇÒa¡Ù2ʱÈçͼ2£¬
tan¦È¨Ttan£¨¦Á+¦Â£©=
| ||||
1-
|
| 2 | ||
x-
|
Áîg£¨x£©=x-
| (a-1)(3-a) |
| x |
ÔÚ[1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ËùÒÔµ±x=1ʱ£¬ymax£¾0£¬tan¦È£¾0£¬¹Ê¦ÈΪÈñ½Ç£®
¡àµ±x=1ʱ£¬g£¨x£©È¡µÃ×îСֵ£¬tan¦ÈÈ¡µÃ×î´óÖµ£¬ÔòÊӽǦÈ×î´ó£®
×ÛÉÏ£ºµ±2-
| 2 |
µ±0£¼a£¼2-
| 2 |
| (1-a)(3-a) |
µãÆÀ£º±¾Ì⿼²é½âÈý½ÇÐεÄʵ¼ÊÓ¦Ó㬿¼²éº¯ÊýµÄµ¥µ÷ÐÔµÄÓ¦Ó㬷ÖÀàÌÖÂÛ˼Ï룬¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿