题目内容


已知定义在区间(0,+∞)上的函数f(x)满足ff(x1)-f(x2),且当x>1时,f(x)<0.

(1)求f(1)的值;

(2)判断f(x)的单调性;

(3)若f(3)=-1,求f(x)在[2,9]上的最小值.


解:(1)令x1x2>0,代入得f(1)=f(x1)-f(x1)=0,故f(1)=0.

(2)任取x1x2∈(0,+∞),且x1>x2

>1,由于当x>1时,f(x)<0,

所以f<0,即f(x1)-f(x2)<0,

因此f(x1)<f(x2),

所以函数f(x)在区间(0,+∞)上是单调递减函数.

(3)∵f(x)在(0,+∞)上是单调递减函数.

f(x)在[2,9]上的最小值为f(9).

ff(x1)-f(x2)得,

ff(9)-f(3),

f(3)=-1,∴f(9)=-2.

f(x)在[2,9]上的最小值为-2.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网