题目内容
【题目】如图,在四棱锥
中,
平面
,AB=BC=1,PA=AD=2,点F为AD的中点,
.
(1)求证:
平面
;
(2)求点B到平面PCD的距离.
![]()
【答案】(1)证明见详解;(2)
.
【解析】
(1)根据直线
//
,通过线线平行即可证明线面平行;
(2)转换三棱锥
的顶点为
,利用等体积法求解点面距离.
(1)由题可知
//
,
又因为
,
为
中点,
故可得
,
故四边形
为平行四边形,
故
//
,
又因为
平面
,
平面
,
故
//平面
,即证.
(2)因为
平面
,
故
为三棱锥
的高,且
;
又因为
,
故![]()
则三棱锥
的体积
.
又因为
平面
,
平面
,
故
均为直角三角形,
故在
中,由勾股定理可得
;
在
中,由勾股定理可得
,
又因为在
中,
.
则在
中,因为
,
故
,则
.
设点B到平面PCD的距离为
,
则由
可得:
,解得
.
故点B到平面PCD的距离为
.
练习册系列答案
相关题目
【题目】李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据
,如表所示:
单价 | 3 | 4 | 5 | 6 | 7 | 8 |
销量 | 70 | 65 | 62 | 59 | 56 |
|
已知
.
(1)若变量
,
具有线性相关关系,求产品销量
(百件)关于试销单价
(千元)的线性回归方程
;
(2)用(1)中所求的线性回归方程得到与
对应的产品销量的估计值
.当销售数据
对应的残差的绝对值
时,则将销售数据
称为一个“好数据”.现从
个销售数据中任取
个,求“好数据”至少
个的概率.
(参考公式:线性回归方程中
,
的估计值分别为
,
).